Metabolomics analysis and classic biomarkers to Predict Mortality in patients with Acute Kidney Injury and Replacement Therapy

Del Toro-Cisneros Noemí¹, <u>Caballero-Islas Adrián^{1,}</u> Páez-Franco José C.², Martínez-Rojas Miguel A.^{1,3}, González-Soria Isaac^{1,3}, Ortega-Trejo Juan Antonio^{1,3}, Bobadilla Norma A.^{1,3}, Ulloa-Aguirre A.², Vega-Vega Olynka¹.

¹Department of nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico city, Mexico. ²Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México, Mexico City, Mexico. ³Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico city, Mexico city, Mexico.

Abstract

- 1. KIM-1 was the best predictor of mortality.
- 2. p-cresol glucuronide was the metabolite present in the highest amounts among the deceased.

Introduction

- □Acute kidney injury (AKI) requiring renal replacement therapy (RRT) is associated with bad outcomes.
- □At the beginning of the RRT, serum metabolic biomarkers and markers of tubular damage might differentiate patients with a high risk of mortality.

In this study, we investigated the performance of 4 urinary biomarkers as well as metabolic analysis and 3 serum biomarkers in predicting mortality in patients with severe AKI and requiring renal replacement therapy (RRT).

Methods and Materials

Patients

-Prospective cohort study of patients with critical COVID-19 in intensive care unit (ICU) with invasive mechanical ventilation (IMV) and who required RRT.

-Mexico City (Mar 2020 - Feb 2022).

*Patients with CKD stages 4 or 5 and kidney transplant were excluded.

Samples

SerpinA3, KIM-1, nGAL and HSP-72 were measured in urine on day 0 (start of RRT) and metabolomics analysis, IL-6, IL-10, and TNF-alpha in serum on day 0.

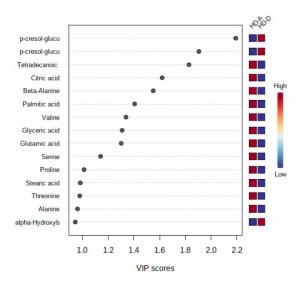
Results

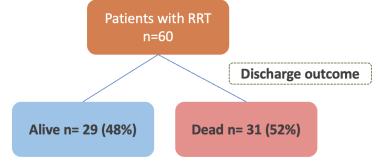
Consort diagram of the studied population.

Results

|--|

	Alive (n=29)	Dead (n=31)	p-Value
Demographics			
Age, years	51 ± 12.2	56 ± 12.2	0.085
Male, n (%)	20 (69)	26 (84)	0.173
Body mass index, kg/m ²	31 (29-35)	29 (27-38)	0.240
Charlson index, n (%)	1 (0-2)	2 (0-3)	0.323
SOFA score	10 (9-11)	10 (9-11)	0.542
Kidney function			
Baseline SCr, mg/dL	1 (0.8-1.2)	1 (0.9-1.2)	0.823
Urine output at RRT initiation, ml	612 (280-1347)	994 (250-2112)	0.416
Laboratory at RRT initiation			
Leukocytes, x 1000/mm ³	12 (9-15)	12 (8-17)	0.784
C-reactive protein, mg/dL	16.2 (10.3-27)	19 (7.6-29.3)	0.906
Creatine kinase, U/L	369 (69-1049)	1013 (302-1852)	0.023
Lactate dehydrogenase, U/L	433 (313-552)	482 (335-586)	0.608
Ferritin, ng/mL	939 (532-1689)	1202 (613-1855)	0.276
PaO ₂ /FiO ₂ ratio	144 (113-170)	123 (96-154)	0.141


2


Area under the receiver-operating characteristics curve of biomarkers for predicting mortality.

Biomarker	AUC (95% CI)	p-value	
Urine biomarker			
KIM-1, µg/mg	0.68 (0.53-0.84)	0.03	
HSP-72, µg/mg	0.51 (0.34-0.68)	0.32	
NGAL, µg/mg	0.63 (0.47-0.79)	0.12	
SerpinA3*, DPI/mg	0.52 (0.36-0.69)	0.78	
SerpinA3**, µg/mg	0.64 (0.48-0.80)	0.10	
Urine output >500ml	0.51 (0.37-0.66)	0.86	
Urine output >1L	0.59 (0.44-0.73)	0.25	
Plasma biomarker			
IL-6, pg/ml	0.57 (0.43-0.72)	0.31	
IL-10, pg/ml	0.64 (0.50-0.79)	0.06	
TNF-alpha, pg/ml	0.52 (0.37-0.67)	0.83	
Abb. AUC, area under the curve.			

VIP schematic scores of partial lest squares-discrimitale analyses (PLD-DA) por HD-A (alive) vs HD-D (dead).

Conclusions

- In this study we observed that KIM-1 was the best predictor of mortality.
- In the metabolomics analysis, p-cresol glucuronide was the metabolite present in the highest amounts among the deceased.

